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Abstract

A new model for local fiber failures in composite materials loaded longitudinally is presented.  In
developing the model, the goal was to account for the effects of fiber breakage on the global response of a
composite in a relatively simple and efficient manner.  Towards this end, the model includes the
important feature of local stress unloading, even as global loading of the composite continues.  The model
has been incorporated into NASA Glenn’s Micromechanics Analysis Code with Generalized Method of
Cells (MAC/GMC ) and was employed to simulate the longitudinal tensile deformation and failure
behavior of several silicon carbide fiber/titanium matrix (SiC/Ti) composites.  The model is shown to be
quite realistic and capable of accurate predictions for various temperatures, fiber volume fractions, and
fiber diameters.  Furthermore, the new model compares favorably to Curtin’s (1993) effective fiber
breakage model, which has also been incorporated into MAC/GMC .

1. Introduction

Design and life prediction tools for advanced multi-phased materials are needed to facilitate the
implementation of these developing materials. Although closure has not been reached regarding the best
models for use in design and life prediction, it has become clear that if a model is ever to serve a purpose
beyond that of basic research, it must fulfill several primary requirements.  These include a significant
level of accuracy on both the macro and micro scales, computational efficiency, and compatibility with
the finite element method.  Fulfillment of these requirements allows a model to serve the composite
developer by enabling quick and easy variation of composite parameters for material development and
optimization purposes.  Likewise, those who attempt to utilize composites in structural design are well
served if the model is consistent with the finite element method.  Though it is not perfect, the generalized
method of cells (GMC ), originally developed by Aboudi (1991, 1995), is an excellent choice for
implementation into modeling tools for advanced composites, given the requirements described above.

GMC is a fully analytical micromechanics model for multi-phased materials with arbitrary
periodic microstructures.  It provides pseudo closed-form multiaxial constitutive equations for such
materials, and allows straightforward implementation of physically-based viscoplastic deformation
models, as well as arbitrary failure and damage models for each phase.  Further, recent independent
advances have simplified the implementation of GMC as an elemental constituent material model in
finite element analysis (Arnold et al, 1999), and significantly increased the model’s computational
efficiency (Pindera and Bednarcyk, 1999).

GMC has been implemented in the NASA Glenn Research Center developed comprehensive
micromechanics analysis code, MAC/GMC (Arnold et al, 1999). The code has many features that render
it useful for design, deformation modeling, and life prediction for a wide range of materials.  These
features include the ability to simulate general thermomechanical loading on composites whose
geometries are represented by a library of continuous and discontinuous repeating unit cells, a library of
nonisothermal elastic/viscoplastic constitutive models, fatigue damage analysis, yield surface analysis,
laminate analysis, and interface modeling. The present investigation extends the capabilities of
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MAC/GMC further by incorporating a new physically based micro-level failure model that allows local
unloading of a given failed fiber to occur in the composite. The code, with its new capabilities, was
employed to model the longitudinal tensile deformation and failure behavior SiC/Ti composites. The new
debonding model, working in the context of the recently developed computationally efficient version of
GMC , allows more accurate modeling of SiC/Ti composite behavior.

Because of SiC/Ti composites’ excellent specific properties at elevated temperatures, these
materials have been researched extensively over the last decade.  Given continuous fiber reinforcement,
the longitudinal deformation and failure behavior of these composites is dominated by the fiber when the
fiber volume fraction is greater than approximately 20%, whereas, at lower fiber volume fractions, the
failure behavior of the matrix phase becomes critical.  Brindley and Draper (1993) characterized the
longitudinal deformation and failure behavior of SiC/Ti-24Al-11Nb by three stages.  The first stage is
linearly elastic, while stage two begins with the onset of matrix yielding, which increases the compliance
of the composite stress-strain curve.  Stage three typically begins at approximately 0.6% global strain
where individual fibers begin to fail. Finally, the composite fails as the matrix fractures along a path of
fractured fibers.  The details of this behavior can vary for different Ti matrix alloys, SiC fiber types,
temperatures, strain rates, and fiber volume fractions.  However, most researchers agree that the overall
qualitative behavior remains consistent.

The local mechanisms that lead to the observed longitudinal deformation and failure behavior of
SiC/Ti composites (and their relative importance) are less discernable.  Clearly, when a fiber fails, (in the
vicinity of the failure) the fiber can no longer support the stress that caused the failure.  In this region, the
stress is transferred to the matrix and nearby fibers and may lead to matrix damage or cracking, increased
matrix deformation, and interfacial debonding or sliding. On this local microscopic level, the mechanics
associated with the broken fiber are clearly complex. Various analyses have been conducted that
explicitly account for some of these effects, examples of which are given below.

The chain-of-bundles approach (Harlow and Phoenix, 1978a,b; Stumpf and Schwartz, 1993)
seeks to develop an expression for the probability of complete failure of a series (chain) of bundles of
fibers based on the statistical failure probability of the individual fibers and the location of the each
failure (along the fiber).  When a fiber within a bundle fails in this approach, it can no longer support any
stress, and, according to a local load sharing rule, the stress is redistributed to fibers that are close to the
failed fiber.  Since the failed fiber is also part of a chain (i.e., in series with another fiber), the chain-of-
bundles approach also includes an “ineffective” length in the vicinity of the failure over which the stress
supported by the fiber is reduced.  With this model, a number of computationally demanding Monte Carlo
type simulations must be performed to determine a probable strength for the composite.

Reifsnider and Highsmith (1982) modeled the longitudinal behavior of polymer matrix
composites (PMCs) by considering an ellipsoidal fiber in the matrix material.  These authors developed
an expression for the longitudinal modulus of the composite based on the material properties of the
constituents and the aspect ratio of the ellipsoidal fiber.  Then, by decreasing the aspect ratio, they
simulated breakage of the fiber into successively smaller sections.  Results indicated that a noticeable
reduction in composite stiffness would not occur until the fiber had fragmented into unrealistically small
sections.  Steif (1984) showed that more valid results were obtainable by including the effect of
debonding at the fiber-matrix interface in the region of the fiber failure.  Using a concentric cylinder
model, this author found that shear-induced debonding could give rise to a larger ineffective length and
reduce the longitudinal stiffness of PMCs considerably.

The well-known approach referred to herein as the Curtin model (Curtin, 1991, 1993) combines
the statistical probability of fiber failure with a shear-lag approach to account for the ineffective length
near a fiber failure.  An expression for the stress in an effective fiber, which represents all fibers in the
composite, is developed that includes the effect of broken or damaged fibers.  A similar approach was
combined with an elastic-plastic rule of mixtures to model the longitudinal deformation and failure of
SiC/Ti composites by Weber et al (1994).  Upper and lower bounds for the ultimate strength of the
composite were determined by assuming no interaction and perfect alignment, respectively, of the fiber
failures.
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A finite element analysis of a composite containing broken fibers with fiber-matrix debonding
near the fiber break was conducted by Nicholas and Ahmad (1994).  These authors found that the length
of the debond, as well as the size of the gap that constitutes the fiber break, has a significant effect on the
longitudinal deformation of the composite.

The approach to modeling the longitudinal failure of composites taken herein is somewhat
different.  No attempt is made to account for the details of the micro-mechanisms associated with the tip
of an actual broken fiber.  GMC ’s inherent lack of normal-shear coupling renders such an approach
infeasible.  Instead, the effects of these mechanisms on the global response of the composite are
accounted for by allowing broken fibers to unload their stress.  A GMC geometric representation of the
composite containing many fibers can be employed, and as each fiber fails it unloads its stress to the
remaining intact regions of the composite.  The global effects of the micro-mechanisms are thus captured
without explicitly modeling them.  Hence, this fiber breakage model represents a very complex situation
in a simplified manner (wherein lies its power), such that, in combination with the GMC approach, a
computationally efficient, multiaxial, multiphase, constitutive model can be employed within a larger
structural problem. This addresses the real purpose of micromechanics: to provide the response of a
multi-phased material given the responses of the constituents, their geometric arrangement, and the
loading on the material.

2. Micromechanics Model: The Generalized Method of Cells (GMC)

The geometry of the triply periodic version of GMC (GMC-TP ) is shown in Fig. 1, wherein the
microstructure of a periodic material is represented by a parallelepiped repeating unit cell consisting of an
arbitrary number of parallelepiped subcells, each of which may be a distinct material.  The method
assumes a linear displacement field in each subcell and imposes continuity of traction and displacement
components between subcells in an average sense (Aboudi, 1995).  In the original formulation of the
GMC equations, this procedure results in a set of linear equations,

~ ~A D Kεε εε αα εεs s
p

s T− + =∆ , (1)

which are solved for a vector of all subcell strain components, εε s , to form strain concentration equations,
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Fig. 1. GMC-TP repeating unit cell.
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εε εε εε ααs s
p

s T= + +A D ∆ . (2)

Here, εε is a vector of the global strain components, εε s
p is a vector of all subcell inelastic strain

components, αα s is a vector of all subcell coefficients of thermal expansion (CTEs), and A and D are
strain concentration matrices.  Equation (2) provides expressions for the local (subcell) strains in terms of
the global strains, local inelastic strains, and local CTEs; a characteristic that makes it a strain
concentration equation.  From this point, the global constitutive equations for the heterogeneous material
can easily be formed by first employing the subcell constitutive equations to obtain the subcell stress
components.  Then, summations can be performed to obtain the global stress components in terms of the
total, inelastic, and thermal strain components.

When implemented in a computer code such as MAC/GMC , the bulk of the computational effort
associated with a given simulation is expended in solving eqn (1) for the unknown subcell strains.  The
number of equations represented by eqn (1) is, 6 N N Nα β γ where N N Nα β γ, , are the number of

subcells in each of the three Cartesian coordinate directions (see Fig. 1).  Thus, as the number of subcells
within the repeating unit cell becomes large, a great deal of computational effort is required to determine
the unknown subcell strain components.  In addition, in the context of inelasticity and temperature-
dependent constituent material properties, simulated loading (in the form of global stress or strain
components) must be applied incrementally.  Thus, solution for the subcell strains must occur not once,
but typically thousands of times.

In order to increase the computational efficiency of GMC , a reformulation of the GMC equations
has recently been performed by Pindera and Bednarcyk (1999) for the doubly periodic version, and by
Bednarcyk and Pindera (2000) for GMC-TP .  This reformulation takes advantage of the lack of shear
coupling inherent to GMC , i.e., the constancy of certain stress components among certain subcells, to
reduce significantly the number of unknowns for which solution is required.  Consequently, instead of
applying continuity of displacements and tractions in terms of the subcell strain components (as in the
original formulation of GMC ), these conditions are applied in terms of subcell stresses.  The result is a
mixed formulation in which only the unique subcell stress components are retained as unknown
quantities.

In the reformulation, the following equation corresponds to eqn (1) from the original formulation
of GMC :

~GT f f fm t p= − −∆T . (3)

Here, T is the vector of all unique subcell stress components and f fm t, , and f p are vectors containing
global total strains, subcell CTEs, and subcell inelastic strains, respectively.  Solving eqn (3) for the
unknown subcell stresses yields,

T G= + +εε ΓΓ ΦΦ∆T , (4)

where the inelastic and thermal terms are accounted for in ΦΦ and ΓΓ , respectively, and G is a mixed
concentration matrix containing subcell dimensions and material compliance components.  Equation (4)
in the reformulated version of GMC replaces eqn (2) from the original formulation, and, as before, the
global constitutive equations can easily be determined by performing summations of the subcell stress
components (see Bednarcyk and Pindera, 2000).

Since in the reformulation we have retained only the unique subcell stress components, the
number of unknown quantities (at each increment of the applied loading) is reduced to
N Nβ γ + N Nα γ + N Nα β + N N Nα β γ+ + .  For comparison, the number of unknowns versus the

number of subcells, for both the original and reformulated versions of GMC-TP , is plotted in Fig. 2.
Note, as the number of subcells in the repeating unit cell becomes large, the difference in the number of
unknowns (and correspondingly computational speed) between the two versions becomes enormous.  For
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example, in the case of a 10×10×10 unit cell, the reformulated version of GMC-TP has 330 unknowns
while the original version has 6000.  This reduction in the number of unknowns corresponds to a
substantial increase in computational efficiency, as the inversion of a given matrix is on the order of the
rank of the matrix cubed.

Table 1 compares CPU times for a sample GMC execution for a simulation of a heat-up of a
SiC/TiAl composite. The table indicates the striking speed-up associated with the reformulation,
particularly as the number of subcells becomes large.  As demonstrated by Pindera and Bednarcyk (1999),
the original formulation and reformulation of GMC yield identical results, thus the speed-up comes with
no loss of accuracy.  Clearly, utilization of the reformulation is crucial to the realization of reasonable
execution times for application of GMC within the finite element analysis of structures.
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Fig. 2. Number of subcells vs. number of unknown variables for the original and reformulated versions of
GMC-TP for N N Nα β γ= = .

GMC Version Subcell Discretization
2×2 4×4 6×6 8×8 10×10 12×12 20×20 100×100

original 0.87 19 182 508 8,679 43,781 - -
reformulated 0.18 0.25 0.5 0.9 1.5 2.3 8.3 796

speed-up
ratio

4.8 76 364 563 5,786 19,035 - -

Table 1.  CPU times (seconds) for a simulated heat-up of a unidirectional SiC/TiAl composite using a
stand alone version of doubly periodic GMC .
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3. Constituent Material Constitutive Models

For this study, the material analyzed is a metal matrix composite composed of continuous silicon
carbide fibers (SCS-6 or SCS-9) embedded in a titanium alloy matrix, TIMETAL 21S1.

3.1 Silicon Carbide Fibers

Textron’s high-strength, high-stiffness, continuous SiC fibers are assumed in this study to be
isotropic and linear elastic.  The vendor-supplied temperature-dependent thermoelastic properties
employed for the SCS-6 fiber are given in Table 2. Temperature-independent properties were employed
for the SCS-9 fiber due to insufficient data.  The vendor-supplied properties are as follows: E = 307 GPa,
ν = 0.25, α = 4.3×10-6 °C-1, where E is the elastic modulus, ν is the Poisson’s ratio, and α is the
coefficient of thermal expansion.

Temperature (°C) E (GPa) ν α (1×10-6/°C)
21 393 0.25 3.56

316 382 0.25 3.72
427 378 0.25 3.91
538 374 0.25 4.07
860 368 0.25 4.57

Table 2.  SCS-6 fiber elastic properties.

3.2 TIMETAL 21S Matrix

TIMETAL 21S is a metastable beta strip titanium alloy, containing approximately 21% alloying
additions, that has high strength as well as good creep and oxidation resistance.  Consequently,
TIMETAL 21S has been utilized in advanced metal matrix composites.  Its (isotropic) viscoplastic
response has been characterized for the model of Bodner and coworkers (Chan et al, 1988; Chan and
Linholm,1990)byKroupa andNeu(1993),aswell asfor a generalizedviscoplasticitywith potential
structure (GVIPS) model (Arnold and Saleeb, 1994) by Arnold et. al. (1996a,b).  The GVIPS model of
Arnold et. al. (1996a,b) has been employed in the current study.  In this model, specific forms of both the
Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative)
potential based multiaxial, nonisothermal, unified viscoplastic model is obtained.  This model possesses a
tensorial internal state variable that is associated with dislocation substructure, and an evolutionary law
that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms.  A
unique aspect of the GVIPS model is the inclusion of nonlinear hardening through the use of a
compliance operator, derived from the Gibb's potential, in the evolution law for the back stress.  This
nonlinear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully
associative (and therefore easily integrated), which greatly influences the multiaxial response under non-
proportional load paths, and in the case of nonisothermal histories, introduces an instantaneous thermal
softening mechanism proportional to the rate of change in temperature.  In addition to this nonlinear
compliance operator, a new, consistent, potential preserving, internal strain unloading criterion has been
introduced to prevent abnormalities in the predicted stress-strain curves during unloading and reversed
loading of the external variables.  These features make GVIPS accurate in relaxation as well as able to
handle any nonproportional loading present within the composite.

The GVIPS flow and evolution equations are, respectively,

1TIMETAL 21S is a registered trademark of TIMET, Titanium Metals Corporation, Toronto, OH.

NASA/TM—2000-210027                                                    6

(1993),



'

ε ε
ij
i

ij
i

ij

F

J
F

=
<

≥

0 0

0
2

if
3

2
if

Σ

A
Q E b a

b aij

ijmn mnkl kl ij ij

ij ij ij

=
<
≥

if

if

Σ
Σ

0

0

,a L A Tij ijkl kl kl= −θ (5)

where the dot represents time differentiation, Aij
is the deviatoric back strain tensor, aij

the deviatoric back
stress tensor, T is temperature, and

ε ε ε µ
κij

i
ij
i

ij
i o

nF= =2

3
equivalent inelastic strain rate

L Q
B B pG

B p G a a

B pG pijkl ijkl
o

p ik jl

p
ij kl

o
p

= =
+

−
−

+ −
−

−

−

−
1

2

0 1
1

1
2

2
1

13 1

3 1

1 2 1

κ δ δ
κ

stiffness operator

b
H Y

G

R B G
aij ij

i
vp

v

o

q

o
ij= − +ε βκε

κ κ
α3

2

3
2

0
2

θ ∂
∂ κij

p ij

o

B

T
B pG

a
= + −0

1
1

2
1

3
dynamic thermal recovery operator

'

F
J

Y= −2

κ
threshold function

Y G= −1 β yield stress function

'

G
I

o

= 2
2κ

back stress function

I a a Jij ij ij ij2 2

3

2

3

2
' ',= = Σ Σ stress invariants (6)

and Eijkl are elastic stiffness coefficients, Hv[• ] is the Heaviside unit step function, and <•> are Macauley
brackets.  Note that the 2 1p− term in the denominator of the stiffness operator Lijkl differs from the

erroneous 6 5p− term reported earlier by Arnold et al (1996a,b). This minor mistake has been found to
influence only the tensile response (dealt with previously) slightly as only the shear components are
affected and can be corrected for by a slight modification to B1 in Table 3.  The temperature-independent
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material parameters are:  κo, n, B1, p, and q, while the temperature-dependent material parameters are:  κ,
µο, B0, Rα, and β. Interpolation functions defined by Arnold et al (1996a) are employed to determine the
material parameters for TIMETAL 21S at temperatures other than the reference temperature of 650 °C.  A
limitation of the material characterization is that above 704 °C, material parameters are taken to be those
at 704 °C.  Thermo-elastic and viscoplastic material parameters at various temperatures are presented in
Table 3.

Temp
(°C)

E
(GPa)

α
(1×10-6/°C)

κ
(MPa)

µ
(MPa/sec)

B0

(MPa)
Rα

(1/sec)
β

23 114.1 7.717 1029 667.6 6.908×10-5 0 0.001

300 107.9 9.209 768.4 137.8 1.035×10-4 0 0

500 95.1 10.70 254.2 1.45×10-3 2.756×10-4 1.68×10-7 0

650 80.7 12.13 5.861 6.19×10-9 5.870×10-4 1.00×10-6 0

704 59.7 14.09 0.756 1.13×10-11 6.346×10-4 6.01×10-5 0

temperature-independent: ν = 0.365, n = 3.3, B1 = 0.0235, p = 1.8, q = 1.35

Table 3. TIMETAL 21S material properties.

4. Debonding/Failure Models

4.1 Curtin Effective Fiber Breakage Model

As mentioned previously, prior researchers have employed the Curtin effective fiber breakage
model (Curtin, 1991, 1993) to simulate the longitudinal tensile behavior of metal matrix composites
(MMCs) (Walls et al, 1991). This model has been incorporated into MAC/GMC , and later predictions
for the longitudinal failure behavior of SiC/Ti composites made using the Curtin model will be presented.
It is important to note that, while this model has been applied to MMCs in the past, it was originally
developed for application to PMCs and ceramic matrix composites (CMCs).  The Curtin model simulates

all fibers in a composite as one effective fiber whose effective elastic modulus, Ef
∗ , is progressively

decreased according to the equation,

E
D

L
E Ef m f mech

f m

f
∗ +

= + −1

2
1

2 0 0 0

1
exp

τ σ
ε . (7)

In this equation, Ef is the original elastic modulus of the fiber, D is the fiber diameter, τ 0 is the critical

shear stress for fiber-matrix interfacial sliding, L0 , σ 0 , and m are the characteristic length, characteristic

strength, and Weibull modulus from the fiber strength distribution, and ε mech
f is the longitudinal
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mechanical strain in the fiber.  Equation (7) is developed based on the Weibull statistical strength
characteristics of the fiber, along with sliding interface and shear transfer arguments (Curtin, 1991).

The Curtin model also provides a methodology for predicting longitudinal composite failure; it is
taken as the composite stress at which the longitudinal stress in the effective fiber reaches a maximum.
This maximum fiber stress occurs at a critical fiber mechanical strain of,

ε τ σ
mech
f

f

m m

E

L

D
x

∗ +
= 1 2 0 0 0

1
1

, (8)

where x is the smallest positive value that satisfies the equation,

1 1 1 0+ − + − =m x xexp . (9)

One difficulty associated with the Curtin effective fiber breakage model is that the parameter τ 0 is not
well known.  Fiber push-out tests on SiC/Ti have indicated that it lies in the range 30 – 50 MPa (Walls et
al, 1991).  Herein, a value of 48 MPa was employed for τ 0 , which agrees with the value used by Walls et
al (1991) in their investigation of SiC/Ti. The remaining Curtin model parameters employed for the SCS-
6 fiber are: D = 142 µm; L0 254= . mm; σ 0 4200= MPa; m= 10.  For these parameters, the Curtin

model yields a value of x = 0 2022. and ε mech
f ∗

= 0 0111. MPa from eqns (8) and (9).  Using these

values, it is possible to plot the uniaxial Curtin model effective fiber constitutive response by assuming
that the average fiber stress is given by,

σ εavg mech
f

f
fE= ∗ .      (10)

For the Curtin model parameters given above, such a plot is provided in Fig. 3.  It is clear from this figure
that the effective fiber stress does indeed reach a local maximum which may be used as a criterion for
composite failure.

4.2 Evolving Compliant Interface (ECI) Model

In MAC/GMC version 2.0 (Wilt and Arnold, 1996) an imperfect bonding model based on the
Achenbach and Zhu (1989) concept of a flexible interface was developed, incorporated, and utilized
(Goldberg and Arnold, 1999).  For the present investigation this modified concept has been further
extended and applied to model discrete longitudinal fiber breakage in composite materials.  The flexible
interface model was originally included in GMC by Aboudi (1988), then included in MAC/GMC by
Wilt and Arnold (1996), and later included in the reformulated version of GMC by Bednarcyk and
Pindera (2000).  The original Achenbach and Zhu (1989) method is based on allowing discontinuities in
the displacement components that are normal or tangential to a given subcell interface.  The discontinuity,
or jump, in the displacement component is related to the appropriate stress at the interface by a debonding
parameter, Rn or Rt.  That is,

u R u Rn

I

n n

I

t

I

t t

I= =σ σ . (11)

Here, I refers to the interface in question, while n and t refer to the normal and tangential components,
respectively.  Initially, when this methodology was used in conjunction with GMC , the debonding
parameters were treated as constant, and the imperfect bonding was present at all times.  Thus, the
compliance of the simulated interface could be chosen by selecting the values of the debonding
parameters; a value of zero would correspond to perfect bonding, while a large value would correspond to
complete debonding.  This form of the debonding model will henceforth be referred to as the constant
compliant interface (CCI ) model.
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Fig. 3. Curtin model uniaxial effective SCS-6 fiber constitutive behavior.

When Wilt and Arnold (1996) first incorporated the CCI model into MAC/GMC , two
distinctions from others’ work arose.  First, interfaces were given a debond strength.  Thus, at stresses
below the debond strength, the interface would remain perfectly bonded.  Then, once the interfacial stress
exceeded the interfacial debond strength, the interface would become flexible for all remaining time.
Second, since MAC/GMC employs a rate (tangent) formulation of GMC 2, the flexible interface model
was employed in rate form.  Thus, for the MAC/GMC implementation, eqn (11) was replaced by,

;

;

u R

u R

n

I

n n

I

t

I

t t

I

n

I

DB

I

t

I

DB

I

=

=

≥

≥

σ

σ

σ σ

σ σ
, (12)

where dotted terms are rates (time derivatives), and σ DB

I
is the debond strength of interface I.

Typically, when using the CCI model within MAC/GMC , one would select large values for the
debonding parameters thus simulating complete debonding at the interface once the interfacial debond
strength had been exceeded. As a result of this procedure, the interfacial stress becomes constant (with
the value of the debond strength) once debonding occurs.  It would also be possible to allow the interface
to become flexible, but not completely debonded, by selecting a moderate value for the appropriate
debonding parameter.  This previous MAC/GMC implementation, however, did not permit the interfacial
stress to decrease after debonding while the global stress applied to the composite continued to increase.
Obviously, this type of local unloading is desirable as it is a more accurate representation of the physics
of local debonding or breakage within an actual material.

2 GMC is used to determine local and global stress and strain rates, which are then integrated outside of
the model to determine the local and global stresses and strains.
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For the present investigation, a new local debonding/failure model that allows local unloading of
stresses even as global loading continues was developed and incorporated into MAC/GMC .  The new
model is still based on the concept of a flexible interface, however, by allowing the debonding parameters
to evolve with time, the desired local unloading may occur naturally.  This implementation of the flexible
interface model will be referred to as the evolving compliant interface(ECI ) model.  In the ECI model,
eqn (12) is replaced by,

u R t R t

u R t R t

n

I

n n

I

n n

I

t

I

t t

I

t t

I

n

I

DB

I

t

I

DB

I

= +

= +

≥

≥

σ σ

σ σ

σ σ

σ σ
, (13)

where the time dependence of the normal and tangential debonding parameters, Rn and Rt , respectively,
are taken to have the following form;

R t t= −Λ Βexp 1 . (14)

Here, Λ and Β are empirical constants specific to the interface, and t is the time since debonding.  Note
that while Λ affects only the magnitude of the expression for R t , changes in the parameter Β affect
the character of the exponential functionality in eqn (14).  Calculating the sensitivity of the debonding
parameter (R t ) to the material constants (Λ and Β), that is;

S
d R t

d
t

Λ Λ Β= = −exp 1 (15)

S
d R t

d
t t

Β Β
Λ
Β Β= = − exp

2 (16)

we see immediately that the sensitivities have opposite signs.  Thus an increase in Λ causes an increase
in R t (at a given time), while an increase in Β causes a decrease in R t (at a given time).  This is a
beneficial feature of the form of eqn (14) as the parameters compete and can thus be used to compensate
for changes in one another.  Furthermore, SΒ is dependent on both Β and Λ while SΛ is independent of
Λ .

Fig. 4 and Fig. 5 illustrate the effects of changing Λ and Β on the debonding parameter (R t )
as a function of time.  These figures show that, once debonding has occurred, the debonding parameter
(and hence the interfacial compliance) increases exponentially with time.  Comparing Fig. 4 and Fig. 5, it
is clear that the debonding parameter, R t , is significantly more sensitive to changes in Β (see eqn (16))
than to changes in Λ (see eqn (15)).  For example, changing Β by a factor of two in Fig. 5 has a much
greater effect on the debonding parameter evolution than does changing Λ by a factor of two in Fig. 4.

At first glance it may seem more natural to allow the debonding parameter to be a function of a
local variable, such as stress at the interface, rather than time.  However, this actually disallows local
unloading because the debonding parameter and the local stress each tend to converge.  In this condition,
the interfacial compliance reaches a value that is sufficiently high to prevent accumulation of additional
local stress, which then prevents the debonding parameter from growing larger.  Once the debonding
parameter stops growing larger, it is a constant, and the effect of debonding becomes equivalent to that of
the CCI model, as represented by eqn (12). Obviously, local unloading then cannot occur.
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The exponential form for the debonding parameters (eqn (14)) was chosen because it allows the
local stress to unload smoothly, and the parameters Λ and Β can be chosen to provide a realistic global
response.  Other functional forms were examined.  A linear form, for instance, did not allow the
debonding parameters to evolve sufficiently quickly so as to allow the local stress to unload unless the
slope of the linear function was quite high.  However, this high slope then caused difficulties due to the
rapid initial growth of the debonding parameters.  Of the many functional forms that were examined for
R(t), the exponential form provided the best combination of features.

5. Model Application and Characterization

Fig. 6 illustrates how the ECI model is applied to simulate fiber breakage in a unidirectional
composite.  The figure shows a GMC-TP repeating unit cell consisting of eight subcells employed to
represent a unidirectional composite. Here, a weak interface surface is placed within the fiber constituent,
with its outward normal parallel to the fiber (and loading direction). The strength, σDB, of the interface
may now be associated with the ultimate longitudinal tensile strength of the fiber, such that when the fiber
stress reaches this value, the interface will debond and the longitudinal stress in the fiber will unload. A
natural consequence of employing the simple unit cell shown in Fig. 6 is that once the longitudinal fiber
stress exceeds σDB, breakage of all fibers within the composite is simulated, as in this case the unit cell
represents the periodic geometry of an actual composite and thus repeats infinitely in all three Cartesian
directions.  The simulated longitudinal tensile behavior of a 25% SCS-6/TIMETAL 21S composite (at
650 °C) represented by the repeating unit cell shown in Fig. 6 is shown in Fig. 7.  This figure includes the
simulated local stress in the fiber (plotted versus the applied global strain), as well as the simulated global
stress-strain response of the composite.  In this case, the following debond parameters (chosen for
illustrative purposes) were employed: σ DB = 3984MPa; Β =10 s; and Λ = × −1 10 6.45 MPa-1.  Clearly,
when the single fiber in the unit cell representation fails at 3984 MPa, simultaneous failure of all fibers in
the composite is simulated, and, as the stress in the fiber(s) unload(s), the global composite stress
decreases as well. Since the global composite stress reaches a maximum (of 1195 MPa) after which the
stress-strain curve attains a physically unrealistic negative slope, this stress may be used as a simulated
ultimate tensile strength (UTS) for the composite.

Also indicated on Fig. 7 are two of the stages identified in the characteristic longitudinal behavior
of SiC/Ti composites by Brindley and Draper (1993).  In stage I, both the fiber and matrix deform
elastically, while in stage II, the matrix has yielded.  Since the repeating unit cell contains only one fiber,
stage III, which in reality involves failure of the weaker fibers, is not present.  Once the single fiber fails,
the global stress supported by the composite begins to decrease, which is clearly not realistic.

Applied Longitudinal
Loading

Interface
Fiber InterfaceMatr ix

Fig. 6. Simple example of the application of the new debonding model to the longitudinal failure of
unidirectional composites.  A weak internal interface is placed within the fiber – interfacial failure then

simulates failure of the fiber.
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Fig. 7. Simulated longitudinal tensile response of a 25% SCS-6/TIMETAL 21S composite at 650 °C
represented by the unit cell shown in Fig. 6.

If a more complex unit cell, like that shown in Fig. 8, is employed, a much more realistic
approximation of the actual composite deformation and failure can be obtained.  Note that execution of
MAC/GMC using a unit cell with such a large number of subcells has become computationally
reasonable due to the availability of the reformulation of the GMC equations.  The unit cell shown in Fig.
8 contains 28 individual fibers, each of which may be given a different strength. A natural source for
these fiber strengths is a vendor-supplied fiber strength histogram, like that shown in Fig. 9 for the SCS-6
silicon carbide fiber.  As the figure indicates, the actual distribution of fiber strengths can be simulated by
the 28 fibers present in the repeating unit cell.  The unit cell still repeats infinitely, so a longitudinal
tensile simulation will still not truly represent discrete longitudinal fiber breakage (rather, the breakage of
each fiber will represent the breakage of one twenty-eighth of all the fibers in the simulated composite),
but clearly the approximation is significantly more realistic.

Fig. 8.  Actual GMC-TP repeating unit cell employed for modeling the longitudinal failure of
unidirectional composites.
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The simulated longitudinal tensile behavior of a 25% SCS-6/TIMETAL 21S composite (at 650
°C) represented by the repeating unit cell shown in Fig. 8 is shown in Fig. 10.  Here, the σ DB of each of
the 28 fibers in the repeating unit cell were taken from the simulated distribution shown in Fig. 9 (but
modified based on fiber strength temperature dependence data, Mall et al, 1998), while values for Λ and
Β identical to those used to generate Fig. 7 were employed.  Now, rather than all fibers failing at once,
fibers modeled using a lower strength begin to fail first, and the experimentally observed stage III of the
deformation behavior is now able to be simulated even when GMC ’s periodic boundary conditions are
employed. As the failed fibers unload the stress they were carrying, and as they cease to contribute to the
composite stiffness, the slope of the predicted stress-strain curve begins to decrease.  Once eight fibers
have failed (representing over one quarter of all fibers), the global composite stress begins to decrease (as
the strain applied to the composite continues to increase), indicating simulated global failure for the
composite.  The difference in the predicted strength for the composite between the single fiber
representation and the 28 fiber representation is striking: 1195 MPa versus 967 MPa – a difference of
24%.  As will be shown, use of the 28 fiber representation allows favorable comparison with experiment.

It should be noted that the ECI model accounts for the aggregation of complex effects associated
with local fiber failures using a simplified mechanism.  In an actual composite, when a fiber fractures, the
stress is released and unloaded only in a local region near the fracture. Due to shear stress along the fiber
matrix interface, local debonding may occur, and the longitudinal stress in the fiber increases as the
distance from the fracture increases.  In fact, a single fiber may fracture many times, each time decreasing
the average stress in the fiber, before final failure of the composite occurs (Reifsnider and Highsmith,
1982).  These local fractures are thus decreasing the effective fiber volume fraction of the composite,
although no single fiber is immediately rendered completely ineffective.  Since GMC has an inherent lack
in the coupling of shear and normal stresses, the aforementioned interfacial shear stress does not arise in
simulated normal tensile tests.  Thus, in applying and characterizing the ECI model (as implemented in
MAC/GMC ) we are attempting to overcome this lack of shear coupling while obtaining the same global
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Fig. 10.  Simulated longitudinal tensile response of a 25% SCS-6/TIMETAL 21S composite at 650 °C
represented by the unit cell shown in Fig. 8.

response brought about through actual mechanisms of fragmentation, shear-lag stress transfer, and local
debonding. The effects of the actual process of local fiber fragmentation, debonding, and transfer of
shear to the matrix are simulated by unloading the longitudinal stress in one twenty-eighth of the fibers at
a time.  The simulated state after one such fiber has completely unloaded its stress corresponds to an
actual composite in which a sufficient number of local fractures have occurred so as to lower the effective
fiber volume fraction by one twenty-eighth.

As mentioned previously, global longitudinal failure of the composite will be taken as the point at
which the simulated global stress-strain curve attains a negative slope.  Although this failure criterion
agrees with the spirit of the Curtin model failure criterion (composite failure when the effective fiber
stress-strain curve attains a negative slope, Fig. 3), it is, in actuality, employed for the sake of
convenience rather than for any true physicality with which it is associated.  In a real composite, global
failure occurs via matrix fracture that links fractured fiber regions.  Clearly, the physics of this process are
as complex as that associated with each individual fiber failure (discussed above).  Modeling this process
accurately, from a mechanistic sense, is beyond the scope of the GMC approach employed in this study.
The maximum that is present in the simulated composite stress-strain curve (see Fig. 10) is brought about
by the unloading of stress in the failed fibers. It is a unique feature of the approach employed herein, and
it is convenient for use as a global failure criterion since it requires no additional correlation with
experiment. Further, the region of the predicted stress-strain curve that follows the maximum is clearly
unrealistic in that an actual composite fails abruptly in longitudinal tension.  As will be shown, since our
failure criterion requires the predicted stress-strain curve to attain a slope of zero (which corresponds to
zero effective stiffness), the model tends to overpredict the stiffness decrease in the composite prior to
failure.

In using this approach, which attempts to capture the global effects of the influence of local fiber
fragmentation, debonding, and transfer of shear to the matrix, as well as the final fracture of the
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composite, but does not explicitly model the effects in a mechanistic sense, one can expect limitations of
the applicability of the approach.  However, as will be shown, the ECI model as implemented in
MAC/GMC can be quite useful (and accurate) for modeling the longitudinal failure behavior of
composites.  Further, the probablistic nature of the fiber strength has been incorporated through the use of
the fiber strength histogram.

In order to allow the ECI model to be as accurate as possible considering its approximate
mechanistic nature, several factors must be considered. The debonding parameters, Λ and Β, provide the
model with the flexibility to model many different scenarios.  However, it is desirable to link these
parameters in some way to physical quantities associated with the composite being analyzed.  That is, we
seek to choose baseline values for Λ and Β based on correlation with experimental data, and then to
relate the parameter values for other simulated conditions to these baseline values.  As will be discussed
below, the varying simulated conditions include the cross-section of the composite that is associated with
a particular failure event (which is related to fiber volume fraction), the global strain rate, and the
temperature.

5.1 Failure Event Cross-Section Effect

Fig. 11 shows the simulated longitudinal tensile response of the same 25% volume fraction SCS-
6/TIMETAL 21S composite at 650 °C modeled previously where a unit cell with an increasing number of
fibers was employed.  The stress-strain curve labeled “1 Fiber” was plotted previously in Fig. 7, while the
stress-strain curve labeled “28 Fibers” was plotted previously in Fig. 10.  In all cases the debond
parameters, Β =10s and Λ = × −1 10 6.45 MPa-1, were used, and the σ DB values for each case were
chosen to provide a good representation of the actual fiber strength histogram shown in Fig. 9 (with a
strength reduction due to elevated temperature), given the number of fibers in the unit cell representation.
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Fig. 11.  Simulated longitudinal tensile response of a 25% SCS-6/TIMETAL 21S composite at 650 °C
represented by unit cells with the indicated number of fibers.  Short vertical lines show the location of the

first fiber failure for the indicated unit cell representation.
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Fig. 11 shows that, as the number of fibers in the unit cell decreases, the effect of the first fiber
failure on the global response of the composite increases.  In all cases, the first fiber failure event
(indicated by the vertical line in Fig. 11) decreases the slope of the simulated stress-strain curve, but for
the 1, 2, and 4 fiber unit cell representations, this slope immediately becomes negative following the first
fiber failure.  For the 8, 18, and 28 fiber unit cell representations, the slope of the simulated stress-strain
curve remains positive until more fibers have failed.  This characteristic of the ECI model is related to the
ratio of the composite cross-sectional area that fails as part of a single event, relative to the remaining
cross-section left intact after this failure event.  When the fiber in the single fiber representation (see Fig.
6) of the 25% volume fraction composite fails, a full 25% of the unit cell cross-section is affected and
begins to unload its stress.  This leaves only 75% of the composite intact to accept the unloaded stress and
support the stress from the additional global loading (which continues to increase). Furthermore, the
intact portion of the composite consists entirely of matrix material, which is significantly more compliant
than the composite as a whole.  The result is the steep negative initial post-failure slope of the curve
associated with the single fiber unit cell representation.  In contrast, when a greater number of fibers is
included in the unit cell representation (see Fig. 8), each fiber failure event affects only a small fraction of
the composite cross-section.  In the case of the 28 fiber representation, the first fiber failure affects only
0.89% of the cross-section, leaving 99.11% of the composite intact to accept the unloaded stress and to
support the additional stress from continued global loading.  The result is that the first fiber failure has
only a small effect on the simulated stress-strain response.  Seven additional fibers must fail (see Fig. 10)
before the slope of the predicted stress-strain curve becomes negative, which indicates global failure.

From the above discussion it follows that utilization of the same ECI model parameters, Λ and
Β , for different composite volume fractions is not warranted, even for unit cell representations with the
same number of fibers.  As discussed in Section 4.2, these parameters control the initial unloading
characteristics of the fibers, which in turn affect the simulated composite response.  As discussed above,
the simulated composite response is also affected by the fraction of the composite cross-section associated
with each failure event.  However, this effect is actually an undesirable artifact of our method for
modeling the process of local fiber fragmentation, debonding, and shear-lag stress transfer.  In reality, the
mechanisms responsible for this complex process, and the effect of the process on the composite
response, are not directly influenced by the fiber volume fraction.  The local process is the same whether
the composite is 20% fibers or 50% fibers.  This is not to say that the overall response of such different
composites is the same, only that the micro-mechanisms associated with fiber breakage are the same in
both composites. As discussed above, for a specific composite this artifact can be eliminated by using a
sufficiently large number of fibers in the composite unit cell representation (see Fig. 11).  In order to
eliminate this artifact for more general composites (i.e., those with different fiber volume fractions) and
allow each simulated failure event to have a consistent initial effect on the composite response, the ECI
model parameters will be linked to the percentage of the composite cross-section associated with a
particular failure event.

To establish this linkage, the results shown in Fig. 12 were used.  The baseline case plotted in Fig.
12 is a detail of a longitudinal stress-strain curve for 25% SCS-6/TIMETAL 21S in which 4% of the fiber
cross-section, which corresponds to 1% of the composite cross-section (X), is permitted to fail.  We then
double the failure cross-section to 2% and seek an ECI model parameter Β that results in consistent
initial composite post-failure behavior.  Note that a constant value of Λ = × −1 10 4.45 MPa-1 was
employed. As Fig. 12 indicates, doubling the failure cross-section to 2% while leaving Β (= 10 s)
unchanged, results in a composite stress-strain curve that is too steep compared to the baseline case.
Conversely, employing a value of Β = 40 s, which is four times that of the baseline case, results in a
curve that is not steep enough.  If the baseline value of Β is doubled to 20 s however, the X = 2%
composite initial post-failure behavior is consistent with the baseline case.  Thus it appears that in order to
adjust the ECI model parameters to remain consistent across cases with different failure cross-sections, it
is possible to simply adjust the parameter Β by the percentage that the debonding cross-section has
changed.  Fig. 12 shows that this is indeed valid as a stress-strain curve is plotted for X = 0.5%, one-half
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Fig. 12.  Detail of simulated longitudinal stress-strain curves for 25% SCS-6/TIMETAL 21S used to
characterize the failure event cross-section dependence of the debonding parameters.  The percentage of
the composite cross-section affected by the failure event (X) and the debonding parameter (Β) are varied.

that of the baseline case.  Employing a value of Β = 5 s, which is one-half that of the baseline case, once
again provides consistent initial post-failure behavior.  Note that we are concerned with the consistency of
only the initial post-failure slope of the composite stress-strain curve, notthe consistency of the composite
stress-strain curve after complete unloading of a particular failed fiber.  Clearly, as loading continues, the
stress-strain curves of composites with different debonded cross-sections must diverge since they
represent composites that now have different effective fiber volume fractions.  Unlike the cross-section
induced differences in the initial post-failure slope, differences in the composite stress-strain curve after
complete unloading of a fiber has occurred are realistic.  Clearly, the complete effective loss of 1% of a
composite’s cross-section should have a larger impact on the response than the complete effective loss of
0.5% of the composite’s cross-section.  This larger impact is evident in Fig. 12.

A clear procedure has thus emerged for modeling the longitudinal response of composite
materials using the ECI model.  A MAC/GMC repeating unit cell is chosen with a sufficient number of
fibers to represent the vendor-supplied fiber strength histogram.  The fiber strengths are assigned based on
the histogram (and any available temperature dependence data), and the Λ and Β debonding parameters,
which are the same for all fibers, are chosen in order to achieve acceptable correlation with an
experimental stress-strain curve for the material.  This chosen value of Β as well as the fiber volume
fraction for the case become reference values, Βref and Vf

ref .  Then, if the fiber volume fraction of the

simulated composite changes, the parameter Β can be changed by the identical percentage in order to
allow each failure event to have an initial effect that is consistent with the baseline (reference) case.  That
is, Β is calculated from,
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,      (17)

while the identical value for Λ is employed.  Note that attempts were made to account for the cross-
sectional dependence by altering Λ . However, utilization of Β proved more effective as the debonding
parameter R t is more sensitive to its changes (see eqn (16) and Fig. 5).

5.2 Strain Rate Effect

An additional effect to which the debonding parameters should be linked is the global strain rate
experienced by the composite.  Since the debonding model is based on explicit time dependence (see eqn
(14)), it is obvious that a set of parameters that provides good correlation with experiment for one strain
rate may not allow the local stress to unload sufficiently quickly if the strain rate is increased.
Conversely, if the strain rate is decreased, the previous set of parameters may cause the unloading to
occur too quickly. This effect is an undesirable artifact of the explicit time dependence.  It is reasonably
obvious that, since the time dependence in the debonding model is scaled by the parameter Β (see eqn
(14)), it is possible to once again alter Β by the percentage change in the global strain rate from a
baseline case.  However, since increasing Β slows the unloading rate (see Fig. 12), if the strain rate is
doubled, the reference Β value must be divided by two (in order to speed up the unloading).  Thus it is
possible to choose the debonding model parameters based on correlation with experiment at one strain
rate and subsequently alter them for application to any other strain rate.  Consequently, eqn (17) can now
be altered to include the effect of strain rate as well,

Β Β= ref ref
ref

V

V
f

f

ε
ε

,      (18)

where ε and ε ref are the global strain rates for the current and reference cases, respectively.

5.3 Temperature Effect

One effect for which the debonding model cannot be easily characterized is that of temperature.
Unlike the failure event cross-section and strain rate effects, the temperature effect is not an artifact of the
model’s approach.  It is likely that the way in which fibers fail and unload their stress is affected by
temperature.  Some of this effect is accounted for by the temperature-dependent fiber and matrix
properties that are included within MAC/GMC .  Further, the debond stress associated with the fibers can
be altered (based on available data) to account for the effect of temperature on fiber strength.  However,
the temperature dependence of the in-situ local fiber failure characteristics (e.g., fragmentation frequency,
debond length, degree of shear-lag stress transfer) on the global composite response cannot be simply
included.  Doing so would likely entail choosing the debonding parameters based on correlation at several
temperatures and interpolating to determine the parameters at a particular temperature.  This is
undesirable from the standpoint of the effort such correlation would require and because additional
experimental stress-strain curves would be needed.  Thus, any temperature dependence of the post-failure
fiber unloading behavior will be neglected in this study.  It is proposed that, in light of the approximate
nature of GMC and the built-in temperature dependence of the material constitutive models, neglecting
the aforementioned temperature dependence will not have a significant effect on the validity and
usefulness of the ECI model.
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6. Results and Discussion

6.1 Nominally 35% Volume Fraction SCS-6/TIMETAL 21S

6.1.1 Monotonic Response
Fig. 13 shows the simulated and experimental longitudinal tensile response of nominally 35%

SCS-6/TIMETAL 21S at 650 °C and 23 °C.  The 650 °C case was chosen as the baseline (reference case)
from which the debonding parameters were characterized, since at 650 °C residual stresses are less
significant than at lower temperatures.  In MAC/GMC , residual stresses are modeled by simulating a
globally stress-free cool down from an elevated temperature, typically taken to be the consolidation
temperature or the heat treatment temperature, to room temperature prior to simulating the actual thermo-
mechanical loading.  Hence, the residual stress state predicted by MAC/GMC may not be perfectly
accurate.  The 650 °C tensile simulation is performed by simulating a stress-free heat up to 650 °C after
the cool down, and then applying the simulated mechanical loading.  Thus, during the heat up, most of the
residual stresses are eliminated, and the predicted initial stress state for the 650 °C case is likely more
accurate than that of the 23 °C case.  It is then logical to use this more accurate prediction to characterize
the debonding model parameters.

The 28 fiber unit cell representation (see Fig. 8) was employed for the ECI model simulations
shown in Fig. 13, and the strengths of the 28 fibers were assigned based on the histogram shown in Fig. 9.
In order to account for the temperature dependence of the fiber strength, the strengths of the 28 fibers
were reduced by 5.3% for the 650 °C case (Mall et al, 1998). Since the average fiber volume fraction of
individual test specimens can vary by a small amount (1 to 3 %) from the nominal value (Bowman,
1999), and since fiber volume fraction variations on this order do have a noticeable effect on longitudinal
tensile predictions, it was necessary to determine an accurate fiber volume fraction for use in the
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Fig. 13.  Comparison of the simulated and experimental longitudinal tensile response of nominally 35%
SCS-6/TIMETAL 21S. .ε = × −167 104 s-1.
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simulations.  This was done by varying the fiber volume fraction in a particular simulation (to the nearest
1%) until good correlation was achieved with the initial linear (elastic) experimental response of the
composite.  For the 650 °C reference case shown in Fig. 13, a fiber volume fraction of 33% was used in
the simulations.

After setting the fiber strengths and fiber volume fraction, the debonding parameters Λ and Β
were chosen to achieve good correlation between model and experiment.  As Fig. 13 shows, the chosen
values of Λ = × −1 10 6.45 MPa-1 and Β = 9 s provide excellent agreement with the experimental stress-
strain curve at 650 °C.  The ECI model appears to over-predict the composite stiffness decrease
associated with the failure of fibers prior to composite failure.  Thus the strain to failure is over-predicted
in this case.  A numerical comparison of the UTS and strain to failure for this case (and all other
simulated cases) is given in Table 4, while bar charts comparing the values are given in Fig. 14 and Fig.
15.

Fig. 13 also shows the ECI model prediction for a nominally 35% SCS-6/TIMETAL 21S
composite at 23 °C.  By matching the initial stress-strain response of the experimental curve shown, a
more accurate fiber volume fraction of 32% was determined for this case.  Thus, using Βref = 9 s and

Vf
ref = 33% in conjunction with eqn (18) yields Β = 8 73. s for this case.  Note that the global strain rate

for both this and the reference case was 1.67×10-4 s-1.  As Fig. 13 shows, the predicted UTS and strain to
failure agree quite well with experiment and are underpredicted by only 1.1% and 1.2%, respectively
(with respect to the average experimental values).  However, the stress is over-predicted by the model
beyond approximately 0.6% strain.  It appears that the onset of yielding is delayed in the simulation
compared to experiment, indicating that the residual stress state predicted by MAC/GMC in this analysis
is somewhat inaccurate (see Goldberg and Arnold, 1999).  This may be due to the use of temperature
dependent fiber properties.  Were the composite yielding behavior better simulated by MAC/GMC , the
ECI model would over-predict the stiffness decrease prior to failure as well as the strain to failure, much
as it did in the 650 °C case.

Also plotted in Fig. 13 are predictions made using the Curtin effective fiber breakage model in
conjunction with MAC/GMC for the tensile response of the nominally 35% SCS-6/TIMETAL 21S, and
predictions for the case in which no fiber failure is permitted.  The Curtin model was included in
MAC/GMC for a simple repeating unit cell like that shown in Fig. 6 by simply reducing the fiber elastic
modulus according to eqn (7) during simulated longitudinal tensile loading.  Furthermore, global

Experiment ECI Model
Curtin

Effective
Model

system Vf
(%)

Temp.
(°°C)

UTS STF UTS STF UTS STF
SCS-6/TIMETAL 21S 35 23 1958 1.127 1929 1.114 2102 1.214

1943 1.128
650 1250 0.909 1249∗ 0.948∗ 1431 1.072

SCS-6/TIMETAL 21S 22 650 887 0.891 886 0.956 1029 1.086
SCS-9/TIMETAL 21S 24 23 1395 1.029 1388 1.004 1642 1.266

1432 1.031
480 1156 0.912 1117 1.012 1414 1.138

1253 1.086
650 760 0.788 707 0.784 978 1.07

Table 4.  Comparison of experimental and predicted longitudinal ultimate tensile strength (UTS) data
(MPa) and strain to failure (STF) data (%) for SiC/TIMETAL 21S composites. ∗ indicates that

experimental data was used for characterization purposes.
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composite failure was considered to occur when the longitudinal mechanical strain in the fiber satisfied
eqn (8).  The simple unit cell geometric representation may be employed because the Curtin model treats
all fibers in the composite as a single effective fiber.  As in the case of the ECI model, actual fiber
volume fractions of 33% and 32% were used for the Curtin model simulation for the 650 °C and 23 °C
temperatures, respectively.

Fig. 13, Fig. 14, and Fig. 15 show that the Curtin model significantly over-predicts both the
composite UTS (over-predicted by an average of 11.2%) and strain to failure (over-predicted by an
average of 12.8%) (see also Table 4).  The decrease in the composite stiffness prior to failure is also much
less pronounced than in the case of the ECI model predictions, allowing the predicted stress-strain curve
to diverge only slightly from the case with no fiber failure.  The reason for the inaccuracy of the Curtin
model for the current application can be easily understood by examining the classic rule of mixtures
approximation for the longitudinal stiffness of a continuous composite wherein,

E V E V Ec f f f m= + −1 , (19)

with Ef , Em , and Ec being the elastic moduli of the fiber, matrix, and composite, respectively.  The

Curtin model simulates the effects of breaking fibers on the composite behavior by progressively
decreasing Ef via the effective fiber modulus given by eqn (7).  Clearly, this effect manifests itself in the

composite stiffness through the first term on the right hand side of eqn (19).  The Curtin model will thus
be most effective when this first term dominates; that is, for high fiber volume fractions or when the
fiber’s elastic modulus dominates, e.g., in PMC applications (for which it was originally designed). In
MMCs like SCS-6/TIMETAL 21S, this is not the case.  The fiber volume fraction is usually low, and the
elastic modulus of the matrix, while smaller than the fiber elastic modulus, is still significant.  In the
present SCS-6/TIMETAL 21S case, the fiber volume fraction is 32% or 33%, while (at room
temperature) Ef/Em = 3.4.  Thus the two terms on the right hand side of eqn (19) are different by only a
factor of 1.6, and the composite stiffness decrease provided by the decreasing effective fiber modulus in
the Curtin model is only slight.  The Curtin composite failure criterion is linked to the effective fiber
modulus since it dictates the point at which the maximum fiber stress will occur (see Section 4.1).  Thus
the ineffectuality of the decreasing effective fiber modulus associated with the Curtin model also results
in the over-prediction of the composite UTS and strain to failure for MMCs.  For PMCs, in which the two
terms on the right hand side of eqn (19) are typically different by a factor of approximately 100, the
Curtin model would clearly perform better.

Alternatively, the ECI model, simulates actual failure of individual fibers in the repeating unit
cell, which then unload from the failure stress.  This, in effect, progressively decreases the fiber volume
fraction of the composite as the fibers break and are unable to support load.  Consequently, the failure
effects are manifested in both terms on the right hand side of eqn (19), and lead to significantly greater
(and more realistic) composite stiffness decrease prior to failure.  Thus the approach represented by the
ECI model appears to be better suited than the Curtin model for simulating the longitudinal behavior of
MMCs.

6.1.2 Cyclic Response
Differences between the ECI and Curtin models are further highlighted by comparing the

predicted longitudinal cyclic response provided by the two approaches.  Fig. 16 provides such a
comparison for the case of 33% SCS-6/TIMETAL 21S at 650 °C (whose monotonic response is given in
Fig. 13).  Also included in this figure is the predicted response of the composite with no fiber breakage or
damage.  Near the maximum stress of the first cycle, the stress-strain curve associated with the Curtin
model diverges only slightly from the undamaged composite stress-strain curve.  As illustrated
previously, the stiffness decrease (during the first cycle) associated with the ECI model is significantly
greater than that associated with the Curtin model.  Upon unloading from the maximum stress of the first
cycle, the stress in the fiber naturally begins to decrease, as does the stiffness degradation associated with
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Fig. 16.  Comparison of the simulated longitudinal cyclic tensile response of 33% SCS6/TIMETAL 21S
obtained via the ECI and Curtin models. .ε = × −167 104 s-1.

the Curtin model (see eqn (7)).  Thus, as the stress in the fiber decreases, the damage in the Curtin model
fiber is, in effect, healing.  Since little damage has occurred in the Curtin model, this healing occurs
quickly, and most of the Curtin unloading stress-strain curve follows the unloading curve associated with
the undamaged prediction closely. In contrast, the fibers that have broken during tensile loading (4 of 28
fibers) when using the ECI model remain broken upon unloading, giving the composite unloading curve
a more matrix-like appearance than that of the Curtin model.  In the ECI model, the fibers that were
broken upon loading heal when the local stress in the fiber becomes negative.  This healing manifests
itself as a slight jog in the ECI model unloading curve in Fig. 16 near the horizontal axis.  While in
compression, both models treat the fibers as completely healed, and the predicted curves for the
composite are very similar (although offset).  When the fiber once again goes into tension during the
second cycle, the entire process associated with damaging the Curtin fiber begins again; the fiber behaves
as (initially) completely undamaged.  The Curtin model predicted second-cycle stress-strain curve follows
the Curtin monotonic curve closely (see Fig. 13), and predicted failure occurs at a slightly higher stress
(1442 MPa vs. 1431 MPa).  Alternatively, in the ECI model, the previously broken fibers remain broken
and are unable to support tensile stress.  The result is a much more compliant response during the second
tensile loading cycle and ultimately the predicted failure is at a significantly lower stress compared to the
monotonic case (1183 MPa compared to 1249 MPa) as shown in Fig. 13. Experimental verification of
this behavior will be the subject of future work.

6.2 Nominally 22% Volume Fraction SCS-6/TIMETAL 21S

Fig. 17 shows the experimental and predicted longitudinal tensile response for nominally 22%
SCS-6/TIMETAL 21S at 650 °C and 23 °C.  Note that the global strain rate has changed from the
reference value of 167 104. × − s-1 to 10 4− s-1, and that the actual fiber volume fractions employed in the
simulations are 22% for 650 °C and 20 % for 23 °C.  Thus, according to eqn (18), the values Β =10 s
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Fig. 17. Comparison of the simulated and experimental longitudinal tensile response of nominally 22%
SCS-6/TIMETAL 21S. ε = −10 4 s-1.

and Β = 9 09. s were used in the ECI model for 650 °C and 23 °C, respectively (using the previously
defined baseline case).  As in the previous cases, at 650 °C, the ECI model over-predicts the composite
stiffness decrease somewhat prior to failure, leading to an over-prediction of the composite strain to
failure (by 7.3%).  However, the ECI model still provided an accurate prediction of the composite UTS
(which is underpredicted by 0.1%) (see Table 4 and Fig. 15); whereas the Curtin model again
significantly over-predicted the composite UTS (by 16.0%) and strain to failure (by 21.9%) at this
temperature.  The 23 °C tensile test was not taken to failure, but rather unloaded after an applied
longitudinal strain of 1%.  As in the previous room temperature case, the stress associated with the
deformation response of the composite was overpredicted, indicating inaccuracies in the simulated
residual stress field, most likely due to inaccuracy in the matrix and fiber constituent representations.
Little fiber damage (i.e., fiber breakage) occurred in the simulations by the time the global loading was
reversed, consequently the predictions of both the Curtin and ECI models are nearly coincident.

6.3 Nominally 24% Volume Fraction SCS-9/TIMETAL 21S

In order to investigate the ability of the new ECI model to capture the discrete breakage behavior
of fibers other than the SCS-6 (without resorting to re-calibrating the debond parameters), simulations
were performed for the longitudinal tensile behavior of nominally 24% SCS-9/TIMETAL 21S.  The SCS-
9 SiC fiber has a smaller diameter than the SCS-6 SiC fiber, and it is somewhat weaker as well.  As
before, the GMC-TP repeating unit cell containing 28 fibers (see Fig. 8) was employed.  The actual and
simulated fiber strength histograms for the SCS-9 fiber are given in Fig. 18.  The temperature-
independent elastic properties employed for the SCS-9 were given in Section 3.1.  The reference
debonding parameters obtained via correlation with experiment for the SCS-6/TIMETAL 21S system
were used for the SCS-9/TIMETAL 21S system.  In addition, simulations for this system were performed
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Fig. 18.  Actual and simulated SCS-9 fiber strength histograms.

using the Curtin model.  The Curtin model parameters employed are: D = 76 2. µm; L0 254= . mm;

σ 0 2520= MPa; m= 5 5. ; τ 0 48= MPa (Grant and Kumnick, 1991). Note that only D, σ0, and m are
modified, and these are directly obtainable from vendor data.  Finally, data on the temperature
dependence of the SCS-9 fiber were unavailable so the same fiber strength distribution was used for all
temperatures (see Fig. 18).

The model and experimental results for the nominally 24% volume fraction SCS-9/TIMETAL
21S are shown in Fig. 19.  The model results at all three temperatures are purely predictive as no model
parameters were recalibrated specifically for the simulations shown; parameters were modified based on
vendor-supplied data only.  The actual fiber volume fractions employed in the simulations are 26%, 24%,
and 24% for 650 °C, 480 °C, and 23°C, respectively, which correspond to the adjusted nominal fiber
volume fractions of the experimental specimens.  The applied strain rate was 167 104 1. × − −s , thus,
according to eqn (18), the employed Β values are 7.09 s, 6.55 s, and 6.55 s, respectively.

Clearly, the ECI model predictions for this SCS-9 system are somewhat less accurate than those
obtained for the SCS-6 system.  In particular, the composite stiffness decrease prior to failure has been
over-predicted to a greater extent.  In the case of the SCS-6 system, this over-prediction lead to an over-
prediction of the composite strain to failure (see Fig. 15) whereas for the SCS-9 system it leads to an
under-prediction of the composite UTS (see Fig. 14). On average, the ECI model underpredicts the UTS
of the SCS-9/TIMETAL 21S composite by 5.4% and its strain to failure by 1.4%.  However, the
discrepancy between the Curtin model predictions and experiment has increased as well, where the Curtin
model now drastically over-predicts the composite UTS, strain to failure, and near-failure deformation.
On average, the Curtin model over-predicts the composite UTS by 20.8% and the strain to failure by
24.2%.  Alternatively, although the ECI model predictions are less accurate than before, they are still in
reasonably good agreement with the experimental stress-strain curves.  Note, some of the inaccuracy
displayed by both models may be attributable to the fact that the thermo-mechanical properties of the
SCS-9 fiber are not as well established as those of the SCS-6 fiber.
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Fig. 19.  Comparison of the simulated and experimental longitudinal tensile response of nominally 24%
SCS-9/TIMETAL 21S. .ε = × −167 104s-1.

7. Summary/Conclusions

A new local evolving compliant interface (ECI ) failure/debonding model has been developed,
incorporated into NASA Glenn’s Micromechanics Analysis Code with Generalized Method of Cells
(MAC/GMC ), and applied to simulate the longitudinal tensile deformation and failure behavior of
TIMETAL 21S matrix composites.  The ECI model is based on an existing compliant interface model,
but unlike its predecessor (the constant compliant interface, CCI , model) the ECI model allows the stress
in a particular fiber to unload after the fiber has failed, thereby allowing improved simulation of the
global manifestation of the effects of the actual local fiber fragmentation, debonding, and shear-lag stress
transfer process.  Thanks to recent advances that have increased the computational efficiency of
MAC/GMC , detailed micro level simulations, in which a unit cell representation comprising 28
individual fibers, were enabled.  These 28 fibers were assigned strengths based on vendor-supplied fiber
strength histograms (along with strength temperature dependence data), allowing accurate simulation of
fiber breakage in the composite during longitudinal tensile loading.

A procedure was outlined for characterizing the ECI model parameters based on a single,
elevated temperature, experimental stress-strain curve.  Based on parameters chosen to obtain good
correlation with this curve, the parameters can be changed to allow the application of the model to
different fiber volume fractions and strain rates.  Predictions were made for the longitudinal tensile
behavior of TIMETAL 21S reinforced with SCS-6 and SCS-9 fibers with different fiber volume fractions,
with different applied strain rates, and at different temperatures. In general, the model predictions
exhibited good agreement with experimental tensile deformation and failure data.  The ECI model was
shown to yield more accurate predictions than the Curtin effective fiber breakage model that has been
applied to titanium matrix composites in the past.  The main weakness of the new model with respect to
its application to longitudinal tension involves over-prediction of the composite compliance prior to
failure.  This leads to some inaccuracy in either the predicted strain to failure of the composite (for the
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SCS-6 system) or the predicted UTS of the composite (for the SCS-9 system).  However, as Table 4, Fig.
14, and Fig. 15 illustrate, if the ECI model prediction of either the composite UTS or strain to failure is
inaccurate, the other quantity typically exhibits good agreement with experiment.
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